Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000

Searching for the parent of the Tunguska Cosmic Body i.e. searching for a needle in a haystack

> Tadeusz J. Jopek, Christiane Froeschlé, Robert Gonczi, Piotr A. Dybczyński

> > OA UAM, Poznań Poland OCA, Nice, France

SeMeN 2007 CIECHOCINEK

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data sources ●○○	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
- 1			1.12				

Tunguska explosion - place and time

Time UT1908 June 30, $0^h 13^m 35^s$ Pasechnik (1986)Location (epicenter) $60^o 53' 09'' N$, $101^o 53' 40'' E$ Fast (1967)

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunguska	a explosi	on - data so	ources				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Scientific expeditions

- Kulik Leonid. A.
- 1921 Kansk, map report
 1927 Vanovara, maps
 expeditions 1928-40
 expeditions 1950-90
 - expeditions 1990-2007

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunguska	a explosi	on - data so	ources				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Scientific expeditions

- Kulik Leonid. A.
- 1921 Kansk, ▶ map ▶ report
- 1927 Vanovara, → maps
- expeditions 1928-40
- expeditions 1950-90
- expeditions 1990-2007

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunguska	a explosi	on - data so	ources				

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunguska	a explosi	on - data so	ources				

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunguska	a explosi	on - data so	ources				

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ ◎ ◆ ◆ ○ ◆

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunguska	a explosi	on - data so	ources				

▲□▶▲□▶▲□▶▲□▶ □ のへで

- ·							
000	0	0	00	00	000000	00	00000
Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix

Objective and subjective data

• barometric registrations,

- seismic records,
- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 no meteorites and micrometeorites.

TCB parameters

T , **a**, h, V_G

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunqual		an data ar					

Objective and subjective data

barometric registrations,

• seismic records,

- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 no meteorites and micrometeorites.

TCB parameters

T , a, h, V_G

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunqual		an data ar					

Objective and subjective data

- barometric registrations,
- seismic records,
- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 no meteorites and micrometeorites.

TCB parameters

T, a, h, V_G

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000
Tunqual		an data ar					

Objective and subjective data

- barometric registrations,
- seismic records,
- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 no meteorites and micrometeorites.

TCB parameters

T , a, h, V_G

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
00●	0	0	00	00	000000	00	00000
Tunqualia	a valaai	an data aa	uraaa				

Objective and subjective data

- barometric registrations,
- seismic records,
- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 no meteorites and micrometeorites.

TCB parameters

T, a, h, V_G

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
00●	0	0	00	00	000000	00	00000
Tunqualia	a valaai	an data aa	uraaa				

Objective and subjective data

- barometric registrations,
- seismic records,
- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 no meteorites and micrometeorites.

TCB parameters

T, a, h, V_G

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
00●	0	0	00	00	000000	00	00000
Tunqualia	a valaai	an data aa	uraaa				

Objective and subjective data

- barometric registrations,
- seismic records,
- forest devastation,
- night sky twilights,
- eyewitnesses reports,
- no meteorite craters,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 no meteorites and micrometeorites.

TCB parameters

 T, a, h, V_G

Data sources	Motivation	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
Unknowr	n nature	of the Tung	uska Cosr	nic Body			

An asteroid!

- Sekanina (1983,1998),
- Andreev (1990),
- Chyba et al. (1993),
- Foscchini (1999),
- Farinella et al. (2001) 83% TCB originated in the asteroid source.

A comet!

- in 1926, 1933 Kulik, in 1966 Fesenkov,
- Zotkin (1969), Kresak (1978)
- Asher and Steel (1998)
- Levin and Bronshten (1986), Bronshten (2000)
- Farinella et al. (2001) 17% TCB orbits originated in the cometary source.

Data sources	Motivation •	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
Unknow	n nature	of the Tung	uska Cosr	nic Body			

An asteroid!

- Sekanina (1983,1998),
- Andreev (1990),
- Chyba et al. (1993),
- Foscchini (1999),
- Farinella et al. (2001) 83% TCB originated in the asteroid source.

A comet!

- in 1926, 1933 Kulik, in 1966 Fesenkov,
- Zotkin (1969), Kresak (1978)
- Asher and Steel (1998)
- Levin and Bronshten (1986), Bronshten (2000)
- Farinella et al. (2001) 17% TCB orbits originated in the cometary source.

Data sources	Motivation O	TCB parameters	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
ТСВ —	adopted	dvnamical p	arameter	s			

$ \begin{array}{c} 1908\\60^{\circ}53\\H=8\\a_{obs}\\6\\h_{obs}\\6\\V_{obs}\\6\end{array} \end{array} $	06 30, 00 ^{h-1} 3′09″ <i>N</i> , 10 ⁻¹ 3.5 [km] 5 (97, 127) [5 (3, 28) [de 5 (14, 32) [k	3 ^m 35 ^s °53'40'' <i>E</i> deg] g] m/s]	-
TC	CB particles	3311	
NE	EAs	2656	
Cc	omets	582	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Data sources	Motivation O	TCB parameters	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
ТСВ —	adopted	dvnamical p	arameter	s			

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
The idea	a of Kres	ak(1978)					

In the area occupied by the TCB points we have many more NEAs than comets — (1340/35).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data sources	Motivation O	TCB parameters O	Searching I • O	Searching II	Results 000000	Conclusions OO	Appendix 00000
The idea	a of Kres	ak(1978)					

In the area occupied by the TCB points we have many more NEAs than comets — (1340/35).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Data sources	Motivation O	TCB parameters O	Searching I • O	Searching II	Results 000000	Conclusions OO	Appendix 00000
The idea	a of Kres	ak(1978)					

cos θ

In the area occupied by the TCB points we have many more NEAs than comets — (1340/35).

Data sources	Motivation O	TCB parameters O	Searching I • O	Searching II	Results 000000	Conclusions OO	Appendix 00000
The idea	a of Kres	ak(1978)					

In the area occupied by the TCB points we have many more NEAs than comets — (1340/35).

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
Strategy	I: invaria	bility of the	$(U - \theta)$ p	lane			

TCB 3311 points, epoch 1888.0

000	0	0	00	00	000000	00	00000
000	0		0.		000000	00	00000
Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix

Strategy I: invariability of the $(U - \theta)$ plane

000	0	0	0●	00	000000	00	00000
Stratage	1. In invorio	bility of the	(11 0)	lono			

Strategy I: invariability of the $(U - \theta)$ plane

 $\cos(\theta)$

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへの

Data sources	O	ICB parameters O	Searching I	OO	Results	Conclusions	Appendix 00000
Stratogy	I: invorio	bility of the	(11 0)	Jano			

Strategy I: invariability of the $(U - \theta)$ plane

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
Searching	g strateg	y II					

The idea taken from the meteor stream searching technique:

- starting from AD 1908, all NEOs and TCBs were integrated for 20 Kyrs in the past,
- every 20 years we calculated: the D_{SH}-values amongst all TCB–NEO pairs and their MOIDs,
- all pairs with very small *D*_{SH}-values were analysed in details.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
Searching	g strateg	y II					

The idea taken from the meteor stream searching technique:

- starting from AD 1908, all NEOs and TCBs were integrated for 20 Kyrs in the past,
- every 20 years we calculated: the D_{SH}-values amongst all TCB–NEO pairs and their MOIDs,
- all pairs with very small *D*_{SH}-values were analysed in details.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions 00	Appendix 00000
Searching	g strateg	y II					

The idea taken from the meteor stream searching technique:

- starting from AD 1908, all NEOs and TCBs were integrated for 20 Kyrs in the past,
- every 20 years we calculated: the D_{SH}-values amongst all TCB–NEO pairs and their MOIDs,

• all pairs with very small *D*_{SH}-values were analysed in details.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions 00	Appendix 00000
Searching	g strateg	y II					

The idea taken from the meteor stream searching technique:

- starting from AD 1908, all NEOs and TCBs were integrated for 20 Kyrs in the past,
- every 20 years we calculated: the D_{SH}-values amongst all TCB–NEO pairs and their MOIDs,
- all pairs with very small *D_{SH}*-values were analysed in details.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II ○●	Results 000000	Conclusions 00	Appendix 00000
Searching	g strateg	y II (2)					

- using similarity threshold *D_c*=0.2, we found 646 NEOs (31 comets) moved on the orbits similar to at least one of TCB particles,
- with D_c=0.1 only 129 NEOs (4 comets) moved at some epoch on the orbits similar to at least one of TCB particles,
- at each of 1000 intermediate epochs we always found an asteroid and TCB particle as similar as *D* <0.06,
- the highest similarity ($D_{SH} = 0.0237$) we observed at 932 BC among 2000 WK 63 and TCB particle ($a = 97^{\circ}$, $h = 26^{\circ}$, V = 26 [km/s]).

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions 00	Appendix 00000
Searching	g strategy	y II (2)					

- using similarity threshold D_c=0.2, we found 646 NEOs (31 comets) moved on the orbits similar to at least one of TCB particles,
- with *D_c*=0.1 only 129 NEOs (4 comets) moved at some epoch on the orbits similar to at least one of TCB particles,
- at each of 1000 intermediate epochs we always found an asteroid and TCB particle as similar as *D* <0.06,
- the highest similarity ($D_{SH} = 0.0237$) we observed at 932 BC among 2000 WK 63 and TCB particle ($a = 97^{\circ}$, $h = 26^{\circ}$, V = 26 [km/s]).

(日) (日) (日) (日) (日) (日) (日)

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions 00	Appendix 00000
Searching	g strategy	y II (2)					

- using similarity threshold D_c=0.2, we found 646 NEOs (31 comets) moved on the orbits similar to at least one of TCB particles,
- with D_c=0.1 only 129 NEOs (4 comets) moved at some epoch on the orbits similar to at least one of TCB particles,
- at each of 1000 intermediate epochs we always found an asteroid and TCB particle as similar as *D* <0.06,

• the highest similarity ($D_{SH} = 0.0237$) we observed at 932 BC among 2000 WK 63 and TCB particle ($a = 97^{\circ}$, $h = 26^{\circ}$, V = 26 [km/s]).

(日) (日) (日) (日) (日) (日) (日)

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions 00	Appendix 00000
Searching	g strategy	y II (2)					

- using similarity threshold D_c=0.2, we found 646 NEOs (31 comets) moved on the orbits similar to at least one of TCB particles,
- with D_c=0.1 only 129 NEOs (4 comets) moved at some epoch on the orbits similar to at least one of TCB particles,
- at each of 1000 intermediate epochs we always found an asteroid and TCB particle as similar as *D* <0.06,
- the highest similarity ($D_{SH} = 0.0237$) we observed at 932 BC among

2000 WK 63 and TCB particle ($a = 97^{\circ}$, $h = 26^{\circ}$, V = 26 [km/s]).

(ロ) (同) (三) (三) (三) (○) (○)

Data sources 000	Motivation O	TCB parameters O	Searching I	Searching II	Results •00000	Conclusions OO	Appendix 00000
TCB and comet 2P/Encke							

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A hypothesis: TCB originated from 2P/Encke

- Yes! Zotkin (1969) and Kresak(1978),
- No! Sekanina (1983, 1998): $\Omega_E = 334.7 \neq \Omega_{TCB} = 279.1$
- Well?!? Asher and Stell (1998): $\Omega_E \approx \Omega_{TCB}$
| Data sources
000 | Motivation
O | TCB parameters
O | Searching I | Searching II | Results
•00000 | Conclusions
OO | Appendix
00000 |
|---------------------|-----------------|---------------------|-------------|--------------|-------------------|-------------------|-------------------|
| TCB and | comet 2 | P/Encke | | | | | |

▲□▶▲□▶▲□▶▲□▶ □ のQで

A hypothesis: TCB originated from 2P/Encke

- Yes! Zotkin (1969) and Kresak(1978),
- No! Sekanina (1983, 1998): $\Omega_E = 334.7 \neq \Omega_{TCB} = 279.1$
- Well?!? Asher and Stell (1998): $\Omega_E \approx \Omega_{TCB}$

Data sources 000	Motivation O	TCB parameters O	Searching I	Searching II	Results •00000	Conclusions OO	Appendix 00000
TCB and	comet 2	P/Encke					

A hypothesis: TCB originated from 2P/Encke

- Yes! Zotkin (1969) and Kresak(1978),
- No! Sekanina (1983, 1998): $\Omega_E = 334.7 \neq \Omega_{TCB} = 279.1$

• Well?!? — Asher and Stell (1998): $\Omega_E \approx \Omega_{TCB}$

Data sources 000	Motivation O	TCB parameters O	Searching I	Searching II	Results •00000	Conclusions OO	Appendix 00000
TCB and	comet 2	P/Encke					

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A hypothesis: TCB originated from 2P/Encke

- Yes! Zotkin (1969) and Kresak(1978),
- No! Sekanina (1983, 1998): $\Omega_E = 334.7 \neq \Omega_{TCB} = 279.1$
- Well?!? Asher and Stell (1998): $\Omega_E \approx \Omega_{TCB}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters:
 a ∈ (97°, 107°), h ∈ (26°, 28°), V ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCD	l comot C	D/Engko (ir	oontinuo	A			

TCB and comet 2P/Encke (in continuo)

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: $a \in (97^{\circ}, 107^{\circ}), h \in (26^{\circ}, 28^{\circ}), V \in (27, 32)$ [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: *a* ∈ (97°, 107°), *h* ∈ (26°, 28°), *V* ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters:
 a ∈ (97°, 107°), h ∈ (26°, 28°), V ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: *a* ∈ (97°, 107°), *h* ∈ (26°, 28°), *V* ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: *a* ∈ (97^o, 107^o), *h* ∈ (26^o, 28^o), *V* ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: *a* ∈ (97^o, 107^o), *h* ∈ (26^o, 28^o), *V* ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: *a* ∈ (97^o, 107^o), *h* ∈ (26^o, 28^o), *V* ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
TCB and	comet 2	2P/Encke (ir	i continuo)			

- the closest similarity, D=0.1471 at 5812 BC,
- D=0.1490, (for the other particle) at 528 AD,
- for remaining 6 particles, D-values \in (0.1787, 0.1969),
- for these 8 particles the radiant parameters: *a* ∈ (97^o, 107^o), *h* ∈ (26^o, 28^o), *V* ∈ (27, 32) [km/s],
- considering tools applied in this study, the comet 2P/Encke is NOT related to TCB,
- Ω_{TCB} of the TCB orbits can be very similar to Ω_E of 2P/Encke, and such coincidence refutes Sekanina strictures.
- close similarities among remaining orbital elements (TCB and 2P/Encke) occurred at separate epochs.
- including nongravitational forces may change above picture.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions OO	Appendix 00000
Cometary	/ origin o	f the TCB					

• For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,

- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington).
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin).
 - 154P/1992 Q1, D=0.0785 in 6252 BC. (Brewington).
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the U- θ plane.

イロト 不良 とくほ とくほう 二日

Data sources 000	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions OO	Appendix 00000
Cometary	v origin o	f the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the U- θ plane.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions 00	Appendix 00000
Cometary	y origin o	f the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing D_c=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the U- θ plane.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions 00	Appendix 00000
Cometary	y origin o	f the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the *U*- θ plane.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions 00	Appendix 00000
Cometary	y origin o	of the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the U- θ plane.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions 00	Appendix 00000
Cometary	y origin o	of the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the U- θ plane.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions 00	Appendix 00000
Cometary	y origin o	f the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the *U*- θ plane.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 00●000	Conclusions 00	Appendix 00000
Cometary	/ origin o	f the TCB					

- For *D_c*=0.2 we have found a dozen of comets more similar to some of the TCB orbits than in case of TCB and 2P/Encke,
- choosing *D_c*=0.1 we found four comets dynamically similar to some of the TCB particles:
 - 97P/1906 V2, D=0.0701 in 16192 BC, (Metcalf-Brewington),
 - 42P/1929 P2, D=0.0712 in 7332 BC, (Neujmin),
 - 154P/1992 Q1, D=0.0785 in 6252 BC, (Brewington),
 - 80P/1982 N1, D=0.0943 in 16512 BC, (Peters-Hartley).
- at AD 1908, for these comets q < 1.6 AU, none of these objects can be found in the U- θ plane.

000	O	0	00	00	000000	00	00000
× <i>r</i>							

Very close similarity: TCB and comet 97P/1906

୍ରର୍ବ

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results	Conclusions OO	Appendix 00000
Asteroid	lal origin	of the TCB					

- *D_c*=0.1 125 of the NEAs more similar to one of the TCB orbit than in the case of comet 2P/Encke,
- at each of 1000 intermediate epoches the smallest D-value always occurred amongst the NEA and TCB orbits (mostly *D* <0.05),
- at 932 BC we found the minimum value D=0.0237 among 2000 WK63 and the TCB particle No 2207 (a = 97°, h = 26°, v = 26 km/s),
- at 632 BC the same object proved to be very similar (D=0.0306) to the particle No 2208 (a = 97°, h = 27°, v = 26 km/s),
- for the same pairs the high similarities maintained over several epochs, e.g. 2001 OY13 and particle No 375 ($a = 97^{\circ}$, $h = 13^{\circ}$, V = 16 [km/s]) moved on the orbits highly similar ($D \sim 0.045$) from AD 1888 till AD 1288.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results ○○○○●O	Conclusions OO	Appendix 00000
Asteroid	al origin	of the TCB					

- *D_c*=0.1 125 of the NEAs more similar to one of the TCB orbit than in the case of comet 2P/Encke,
- at each of 1000 intermediate epoches the smallest D-value always occurred amongst the NEA and TCB orbits (mostly *D* <0.05),
- at 932 BC we found the minimum value D=0.0237 among 2000 WK63 and the TCB particle No 2207 (a = 97°, h = 26°, v = 26 km/s),
- at 632 BC the same object proved to be very similar (D=0.0306) to the particle No 2208 ($a = 97^{\circ}$, $h = 27^{\circ}$, v = 26 km/s),
- for the same pairs the high similarities maintained over several epochs, e.g. 2001 OY13 and particle No 375 ($a = 97^{\circ}$, $h = 13^{\circ}$, V = 16 [km/s]) moved on the orbits highly similar ($D \sim 0.045$) from AD 1888 till AD 1288.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results ○○○○●O	Conclusions OO	Appendix 00000
Asteroid	al origin	of the TCB					

- D_c=0.1 125 of the NEAs more similar to one of the TCB orbit than in the case of comet 2P/Encke,
- at each of 1000 intermediate epoches the smallest D-value always occurred amongst the NEA and TCB orbits (mostly D <0.05),
- at 932 BC we found the minimum value D=0.0237 among 2000 WK63 and the TCB particle No 2207 (a = 97°, h = 26°, v = 26 km/s),
- at 632 BC the same object proved to be very similar (D=0.0306) to the particle No 2208 ($a = 97^{\circ}$, $h = 27^{\circ}$, v = 26 km/s),
- for the same pairs the high similarities maintained over several epochs, e.g. 2001 OY13 and particle No 375 ($a = 97^{\circ}$, $h = 13^{\circ}$, V = 16 [km/s]) moved on the orbits highly similar ($D \sim 0.045$) from AD 1888 till AD 1288.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions OO	Appendix 00000
Asteroida	al origin	of the TCB					

- *D_c*=0.1 125 of the NEAs more similar to one of the TCB orbit than in the case of comet 2P/Encke,
- at each of 1000 intermediate epoches the smallest D-value always occurred amongst the NEA and TCB orbits (mostly *D* <0.05),
- at 932 BC we found the minimum value D=0.0237 among 2000 WK63 and the TCB particle No 2207 (a = 97°, h = 26°, v = 26 km/s),
- at 632 BC the same object proved to be very similar (D=0.0306) to the particle No 2208 (a = 97°, h = 27°, v = 26 km/s),

• for the same pairs the high similarities maintained over several epochs, e.g. 2001 OY13 and particle No 375 ($a = 97^{\circ}$, $h = 13^{\circ}$, V = 16 [km/s]) moved on the orbits highly similar ($D \sim 0.045$) from AD 1888 till AD 1288.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results	Conclusions OO	Appendix 00000
Asteroida	al origin (of the TCB					

- D_c=0.1 125 of the NEAs more similar to one of the TCB orbit than in the case of comet 2P/Encke,
- at each of 1000 intermediate epoches the smallest D-value always occurred amongst the NEA and TCB orbits (mostly *D* <0.05),
- at 932 BC we found the minimum value D=0.0237 among 2000 WK63 and the TCB particle No 2207 (a = 97°, h = 26°, v = 26 km/s),
- at 632 BC the same object proved to be very similar (D=0.0306) to the particle No 2208 (a = 97°, h = 27°, v = 26 km/s),
- for the same pairs the high similarities maintained over several epochs, e.g. 2001 OY13 and particle No 375 ($a = 97^{\circ}$, $h = 13^{\circ}$, V = 16 [km/s]) moved on the orbits highly similar ($D \sim 0.045$) from AD 1888 till AD 1288.

The sees	of ala a a	a stanting the starts		a a ta wai al O		(00	
Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results	Conclusions OO	Appendix 00000

The case of closest similarity: TCB and asteroid 2000 WK 63

) n n

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions ●O	Appendix 00000
Conclusio	ons						

• the parent body of the Tunguska object was not found,

- instead, we have noticed, that between 1908 AD and 18 000 BC about 130 NEOs moved on the trajectories highly similar to some of the TCB orbits,
- very high orbital similarity occured more often for NEAs than for comets (125 to 4) and this result is in agreement with the paper Farinella et al. (2001),
- in the epoch 932 BC we found the case of the highest similarity among: 2000 WK63 and the TCB particle No 2207, (D=0.0237),
- for comets, the highest similarity occurred for 97P/1906 V2 and TCB particle No 2205 (D=0.0701 in the epoch 16192 BC),
- considering the tools we have applied in this study comet 2P/Encke is not the parent body of the TCB.

・ コット (雪) (小田) (コット 日)

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions •O	Appendix 00000
Conclusio	ons						

- the parent body of the Tunguska object was not found,
- instead, we have noticed, that between 1908 AD and 18 000 BC about 130 NEOs moved on the trajectories highly similar to some of the TCB orbits,
- very high orbital similarity occured more often for NEAs than for comets (125 to 4) and this result is in agreement with the paper Farinella et al. (2001),
- in the epoch 932 BC we found the case of the highest similarity among: 2000 WK63 and the TCB particle No 2207, (D=0.0237),
- for comets, the highest similarity occurred for 97P/1906 V2 and TCB particle No 2205 (D=0.0701 in the epoch 16192 BC),
- considering the tools we have applied in this study comet 2P/Encke is not the parent body of the TCB.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions •O	Appendix 00000
Conclusio	ons						

- the parent body of the Tunguska object was not found,
- instead, we have noticed, that between 1908 AD and 18 000 BC about 130 NEOs moved on the trajectories highly similar to some of the TCB orbits,
- very high orbital similarity occured more often for NEAs than for comets (125 to 4) and this result is in agreement with the paper Farinella et al. (2001),
- in the epoch 932 BC we found the case of the highest similarity among: 2000 WK63 and the TCB particle No 2207, (D=0.0237),
- for comets, the highest similarity occurred for 97P/1906 V2 and TCB particle No 2205 (D=0.0701 in the epoch 16192 BC),
- considering the tools we have applied in this study comet 2P/Encke is not the parent body of the TCB.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions ●O	Appendix 00000
Conclusio	ons						

- the parent body of the Tunguska object was not found,
- instead, we have noticed, that between 1908 AD and 18 000 BC about 130 NEOs moved on the trajectories highly similar to some of the TCB orbits,
- very high orbital similarity occured more often for NEAs than for comets (125 to 4) and this result is in agreement with the paper Farinella et al. (2001),
- in the epoch 932 BC we found the case of the highest similarity among: 2000 WK63 and the TCB particle No 2207, (D=0.0237),
- for comets, the highest similarity occurred for 97P/1906 V2 and TCB particle No 2205 (D=0.0701 in the epoch 16192 BC),
- considering the tools we have applied in this study comet 2P/Encke is not the parent body of the TCB.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions ●O	Appendix 00000
Conclusio	ons						

- the parent body of the Tunguska object was not found,
- instead, we have noticed, that between 1908 AD and 18 000 BC about 130 NEOs moved on the trajectories highly similar to some of the TCB orbits,
- very high orbital similarity occured more often for NEAs than for comets (125 to 4) and this result is in agreement with the paper Farinella et al. (2001),
- in the epoch 932 BC we found the case of the highest similarity among: 2000 WK63 and the TCB particle No 2207, (D=0.0237),
- for comets, the highest similarity occurred for 97P/1906 V2 and TCB particle No 2205 (D=0.0701 in the epoch 16192 BC),
- considering the tools we have applied in this study comet 2P/Encke is not the parent body of the TCB.

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions ●O	Appendix 00000
Conclusio	ons						

- the parent body of the Tunguska object was not found,
- instead, we have noticed, that between 1908 AD and 18 000 BC about 130 NEOs moved on the trajectories highly similar to some of the TCB orbits,
- very high orbital similarity occured more often for NEAs than for comets (125 to 4) and this result is in agreement with the paper Farinella et al. (2001),
- in the epoch 932 BC we found the case of the highest similarity among: 2000 WK63 and the TCB particle No 2207, (D=0.0237),
- for comets, the highest similarity occurred for 97P/1906 V2 and TCB particle No 2205 (D=0.0701 in the epoch 16192 BC),
- considering the tools we have applied in this study comet 2P/Encke is not the parent body of the TCB.

Data sources Motivation I CB parameters Searching I Searching II Hesuits Conclusions Appendi 000 0 0 00 00 00 000000 C● 000000	Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
	000	O	O	OO	00	000000	O●	00000

Searching for the parent of the Tunguska Cosmic Body i.e. searching for a needle in a haystack

Tadeusz J. Jopek, Christiane Froeschlé, Robert Gonczi, Piotr A. Dybczyński

OA UAM, Poznań Poland OCA, Nice, France

SeMeN 2007 CIECHOCINEK

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data sources	Motivation O	TCB parameters O	Searching I	Searching II	Results 000000	Conclusions 00	Appendix •0000
Tunguska	a explosio	on - epicent	er				

Back
Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000

Tunquaka	ovologio	n data aqu	rooo				
000	0	0	00	00	000000	00	00000
Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix

Subjetive data: eyewitnesses reports

"On the History of the Bolide of 1908 June 30," by L. Kulik*

Translated by LINCOLN LA PAZ and GERHARDT WIENS, Departments of Mathematics and German, The Ohio State University

The agent of the intermediate station Philimonovo, I. I. Ilyinsky, questioned by the author at this station on the 4th of October, 1921, related the following: "I have served at the flagstation Philimonovo since 1910. Before that I was stationed at the siding Lyalka, 14 versts⁴ to the east of the station Kansk, on the old railroad line. The phenomenon described in the calendar⁸ did not happen when I was at Philimonovo, but [when I was] at the siding Lyalka. I, myself, was a witness of it. Just at the time of the fall I happened to be on duty and was on the platform awaiting the arrival of freight train No. 92 from Kansk. Suddenly I felt something like a strong vibration of the air and heard a rumbling sound. I became very much confused, thinking that this was an earthquake or some other natural phenomenon. Train No. 92 was at that time 1.5 versts from Lyalka. The locomotive engineer on No. 92, Gryasnov, was so frightened by the rumbling sound and the vibration of the air that he stopped the train, fearing that it was derailed, and, after arriving at the siding, he even proposed that the train be inspected to see whether an explosion of some of the freight might not have oc-

^{*}Published originally in the Journal of the Russian Academy of Sciences, 1927 A, pp. 393-8; read by the Academician V. I. Vernadsky on April 20, 1927. Translated from the Russian of L. Kulik by Gerhardt Wiens, Department of

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000

Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix
000	0	0	00	00	000000	00	00000

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

ъ

Back

Tupquaka	ovelopio	n over a ditio		007			
000	0	0	00	00	000000	00	00000
Data sources	Motivation	TCB parameters	Searching I	Searching II	Results	Conclusions	Appendix

Tunguska explosion - expeditions 1990-2007

・ロン ・聞と ・ 聞と ・ 聞と

ъ