Dynamika obiektów współorbitalnych z Ziemią

Paweł Wajer

Centrum Badań Kosmicznych PAN Warszawa

Ogólnopolskie Seminarium Mechaniki Nieba Ciechocinek, 26-28 września 2007

イロト イポト イヨト イヨト

Outline

Coorbital region Observatory data Orbital evolution of selected objects Conclusions and summary

Coorbital region

Introduction Types of the coorbital motion

Observatory data

Introduction Method of numerical integrations Selected objects

Orbital evolution of selected objects

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

Conclusions and summary

- - 4 回 ト - 4 回 ト

Introduction Types of the coorbital motion

▶ 1 : 1 mean motion resonance

< □ > < □ > < □ > < □ > < □ > .

æ

Introduction Types of the coorbital motion

- 1:1 mean motion resonance
- Coorbital region: $|a a_{planet}| \leq r_H$

・ロト ・回 ト ・ヨト ・ヨト

Introduction Types of the coorbital motion

- 1:1 mean motion resonance
- Coorbital region: $|a a_{planet}| \leq r_H$
- For the Earth: $r_H \approx 0.01 \text{ AU}$

イロン イヨン イヨン イヨン

Introduction Types of the coorbital motion

Three types of coorbital behaviour

Figure: (a)- Tadpole orbits (TP) – taking place around the triangular Lagrange equilibrium points L_4 or L_5 . (b)- Horseshoe orbits (HS) – around the Lagrange points L_3 - L_4 - L_5 . (c)- Quasi-satellite orbits (QS) – they librate around the longitude of their associated planet and stay close to the planet over many orbital periods

Introduction Method of numerical integrations Selected objects

Introduction

 There are presently over 30 asteroids known with semimajor axis between 0.99 and 1.01 AU

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction Method of numerical integrations Selected objects

Introduction

- There are presently over 30 asteroids known with semimajor axis between 0.99 and 1.01 AU
- Some of these objects show transitions between horseshoe and quasi-satellite motion (Christou 2000, Brasser et al., 2004)

Introduction Method of numerical integrations Selected objects

Method of numerical integrations

The positional observations were taken from the NeoDys pages (http://newton.dm.unipi.it/neodys/)

・ロン ・回と ・ヨン・

Introduction Method of numerical integrations Selected objects

Method of numerical integrations

- The positional observations were taken from the NeoDys pages (http://newton.dm.unipi.it/neodys/)
- The orbital elements were determined using package developed at Space Research Center

Introduction Method of numerical integrations Selected objects

Method of numerical integrations

- The positional observations were taken from the NeoDys pages (http://newton.dm.unipi.it/neodys/)
- The orbital elements were determined using package developed at Space Research Center
- The sample of 100 clones of the nominal orbit of the asteroids was constructed according to the method described by Sitarski (1998)

Introduction Method of numerical integrations Selected objects

Method of numerical integrations

- The positional observations were taken from the NeoDys pages (http://newton.dm.unipi.it/neodys/)
- The orbital elements were determined using package developed at Space Research Center
- The sample of 100 clones of the nominal orbit of the asteroids was constructed according to the method described by Sitarski (1998)
- The equations of motion of these objects have been integrated in barycentric coordinates using the recurrent power series method taking into account the perturbations of all planets and the Moon

Introduction Method of numerical integrations Selected objects

Method of numerical integrations

- The positional observations were taken from the NeoDys pages (http://newton.dm.unipi.it/neodys/)
- The orbital elements were determined using package developed at Space Research Center
- The sample of 100 clones of the nominal orbit of the asteroids was constructed according to the method described by Sitarski (1998)
- The equations of motion of these objects have been integrated in barycentric coordinates using the recurrent power series method taking into account the perturbations of all planets and the Moon
- The orbit computations were done for 1000 years into the future and into the past

Introduction Method of numerical integrations Selected objects

Selected objects

Table: Osculating orbital elements of examined co-orbital objects. Epoch: April 10, 2007 (JD 2454200.5), Equinox: J2000.0.

Object	a [AU]	е	<i>i</i> [°]	Ω[°]	$\omega[^{\circ}]$	<i>M</i> [°]	arc (yr)
2002 AA29	0.9939	0.0130	10.7431	106.4494	101.7282	2.7027	2.01
2003 YN107	0.9927	0.0139	4.3018	264.8437	80.4850	217.7923	1.28
2004 GU9	1.0006	0.1365	13.6497	38.8775	281.1509	244.8943	5.92
2006 FV35	1.0010	0.3775	7.0998	179.6192	170.8588	226.9023	11.99
Cruithne	0.9976	0.5147	19.8100	126.2930	43.7470	99.1446	33.66

イロト イヨト イヨト イヨト

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2002 AA29-distance from the Earth a = 0.9939, e = 0.0130, $i = 10.7431^{\circ}$

Paweł Wajer Dynamika obiektów współorbitalnych z Ziemią

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

View of the trajectory of 2002 AA29 during its QS phase in geocentric reference frame $q = 0.9939, q = 0.0130, i = 10.7431^{\circ}$

Figure: (a)-motion in x-y projection. (b)-motion in x-z projection. (c)-motion in y-z projection.

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2002 AA29-motion with respect to Earth in a corotating frame $a = 0.9939, e = 0.0130, i = 10.7431^{\circ}$

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2002 AA29-evolution of semimajor axis

 $a = 0.9939, e = 0.0130, i = 10.7431^{\circ}$; nominal orbit and 9 selected clones

Paweł Wajer Dynamika obiektów współorbitalnych z Ziemią

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2003 YN107-distance from the Earth a = 0.9927, e = 0.0139, $i = 4.3018^{\circ}$

Paweł Wajer Dynamika obiektów współorbitalnych z Ziemią

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2003 YN107-evolution of semimajor axis

 $a = 0.9927, e = 0.0139, i = 4.3018^{\circ}$; nominal orbit and 9 selected clones

<ロ> <同> <同> <同> < 同>

< ∃⇒

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2003 YN107-motion with respect to Earth in a corotating frame $a = 0.9927, e = 0.0139, i = 4.3018^{\circ}$

<ロ> <同> <同> <同> < 同>

< ≣ >

э

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2004 GU9-motion with respect to Earth in a corotating frame $_{a = 1.0006, e = 0.1365, i = 16.6497^{\circ}}$

イロト イヨト イヨト イヨト

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2004 GU9-evolution of semimajor axis

 $a = 1.0006, e = 0.1365, i = 16.6497^{\circ}$; nominal orbit and 9 selected clones

Paweł Wajer Dynamika obiektów współorbitalnych z Ziemią

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2006 FV35-motion with respect to Earth in a corotating frame $_{a = 1.0010, e = 0.3775, i = 7.0998^{\circ}}$

イロト イヨト イヨト イヨト

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

2006 FV35-evolution of semimajor axis

 $a = 1.0010, e = 0.3775, i = 7.0998^{\circ}$; nominal orbit and 9 selected clones

Paweł Wajer Dynamika obiektów współorbitalnych z Ziemią

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

Cruithne-motion with respect to Earth in a corotating frame $a = 0.9976, e = 0.5147, i = 19.8100^{\circ}$

イロト イヨト イヨト イヨト

2002 AA29 2003 YN107 2004 GU9 2006 FV35 Cruithne

Cruithne-evolution of semimajor axis

 $a = 0.9976, e = 0.5147, i = 19.8100^{\circ}$; nominal orbit and 9 selected clones

イロン イヨン イヨン イヨン

Summary

Object	t _{QS} [ys]	r _{qs} [AU]	HS-QS type
2002 AA29	45	0.14	transient
2003 YN107	10	0.07	transient
2004 GU9	1000	0.30	transient
2006 FV35	>2800	0.64	transient
Cruithne	200	0.95	compound

< □ > < □ > < □ > < Ξ > < Ξ > ...

æ

Conclusions

 Two types of HS-QS transitions: compound HS-QS orbits (Cruithne) and transient HS-QS orbits (remains asteroids)

イロト イポト イヨト イヨト

Conclusions

- Two types of HS-QS transitions: compound HS-QS orbits (Cruithne) and transient HS-QS orbits (remains asteroids)
- In contrast to true satellites, quasi-satellite orbits lie outside the planet's Hill sphere

Conclusions

- Two types of HS-QS transitions: compound HS-QS orbits (Cruithne) and transient HS-QS orbits (remains asteroids)
- In contrast to true satellites, quasi-satellite orbits lie outside the planet's Hill sphere
- QS states can be repeated

Conclusions

- Two types of HS-QS transitions: compound HS-QS orbits (Cruithne) and transient HS-QS orbits (remains asteroids)
- In contrast to true satellites, quasi-satellite orbits lie outside the planet's Hill sphere
- QS states can be repeated
- Between QS states the other types of resonant motion are possible